
ON T H E  T E M P E R A T U R E  J U M P  I N  A R A R E F I E D  

GAS O V E R  A P E R M E A B L E  S U R F A C E  

V .  G .  L e i t s i n a  a n d  N .  V .  P a v l y u k e v i c h  UDC 533.72 

An express ion  is obtained for  the t e m p e r a t u r e  jump in a r a r e f i ed  gas over  a p e r m e a b l e  s u r -  
face on the bas i s  of a numer ica l  solution of the model kinetic equation in the Knudsen l aye r .  

It is known that the express ion  for  the t e m p e r a t u r e  jump in a r a re f i ed  gas over  an impe rmeab le  s u r -  
face ,  obtained f r o m  the solution of the model kinetic equation in the Knudsen l aye r ,  differs  f r o m  the Maxwell 
exp res s ion  in the r ep l acemen t  of the fac tor  (2-a) /c r  by the fac tor  ( 2 - k a ) / q ,  where  k = 0.827 [1]: 

AT=- -75n  2 - - 0 , 8 2 7 0 i  (d_T~ . (1) 
128 6 \ d x ] w  

In the p re sen t  work  the t e m p e r a t u r e  jump is calculated f r o m  the solution of an analogous equation for  
a r a r e f i ed  gas over  a p e r m e a b l e  wall  

of 
vx -~x =0 ( fM-  f), (2) 

where  f is the molecu la r  veloci ty  distr ibution function 

/r "~  ( 2 ~ / ~ T ) 3 / 2  exp . 2 R T  " (3) 

As in [1], let us a s s um e  that the gas densi ty n and t e m p e r a t u r e  T change only sl ightly in the t r a n s i -  
tion domain so that they can be cons idered  constant (and equal to ~ and ~', respect ive ly)  in the solution of 
(2) and only the gradients  dn/dx and dT/dx depend on the coordinate  x.  

Let  us r e p r e s e n t  the dis t r ibut ion function a s  follows: 

f= fo+~ .  (4) 

where  f0 is some equi l ibr ium distr ibut ion function close to fM, and the cor rec t ion  fl is smal l  compared  to f0. 

Star t ing f r o m  the above-ment ioned  assumpt ions ,  let  us wr i te  f0 as 

ro = . -  2- -f " (5) 

Let us a s sume  that the m a s s  flow ra te  of the gas u in the x di rect ion is cons iderably  l ess  than the 
mean  veloci ty  of the rma l  motion v and is constant in the Knudsen l ayer  0a = u0). 

By analogy with [1], substi tuting (3)-(5) into (2), we reduce  the equation to the following: 

Of 1 1 dn 1 ( 3  v~ ) dT vxu o 
v~ T x  + o f ~ = - -  v~ -_- - -  (x) fo + v~ = _ fo. (6) n dx ~ 2 2RT ~ (X) fo-}-O RT 

Let us a s sume  that the gas  molecules  re f lec ted  f r o m  the wall  have a Maxwell dis t r ibut ion c o r r e s p o n d -  
ing to the wall  t e m p e r a t u r e  Tw, i .e. ,  the coefficient of accommodat ion  r equals one. 

Taking into account that the ra t ios  (n+-n0) /n  and ( rw-T0) /~"  a re  smal l ,  let  us wr i te  the boundary con-  
dition on the wall  thus: 
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[:(0, v)= n+-~ n~ fo T'~--T~ 3 
v~>o n T- 2 

v~ ) ~7 fo. (7) 

On the bas i s  of (6) and (7) we obtain for  fl 
x 

[1 = exp . . . .  (t) exp ( t - -  x) dt ~o-- 

0 

0 

~,<o f ' = ~  -~x (t) exp ( t - - x )  d t - -  2 2RT  ~ - 3  dx (t--x) dt + - - ~  [o. 
x x 

The t e m p e r a t u r e  jump is defined as the difference between the t e m p e r a t u r e  T~ (which is a l inear  ex-  
t rapola t ion  to the wall  of the t e m p e r a t u r e  curve  in the domain bounding the l aye r  near  the wall) and the wall  
t e m p e r a t u r e  Tw, Hence,  we a s s u m e  hencefor th  

~-~ o = T x  (~)' ~ oo.  

Using the m a s s  and energy  conserva t ion  laws,  we find the unknown functions (dn/dx)(x) and (dT/dx) (x) 
f r o m  the express ions  governing the m a s s  and heat  fluxes in a gas over  a p e r m e a b l e  wali: 

S vffdv = ; vxfadv= nu o, 
v v 

dT 

v v 

The constants  (n+-n0) /n  and ( T w - T 0 ) / T  play the par t  of p rope r  p a r a m e t e r s .  

Let  us introduce the d imens ion less  va r i ab l e s  

16 x 

- 15~ ~/2 I ' 

(9)  

V = v U - uo 
( 2 R T )  1/2' ( 2 ~ T )  1/2 ' 

1 dn 1 dT (U 

and let us define the functions 

on 

S Jr, (g) = V~ exp - -  - -  --V;. dV~, 
V~ 

0 

- - V "  ~ V '2 dY. 
V~ 

Y x > O  

Let  us use  the new va r i ab le s  

and the p r o p e r  p a r a m e t e r s  

r ( U =  ~ ( U ,  z* (~) = z (~) 
7,w ~w 

P,o = - -  
n + _ - -  n o , lth = _ T ~ _ - -  To . 

nXw Tgw 
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Substituting (8) into (9) and start ing f rom the fact that 

O =  - -  - -  
8 v ;~= 25~ o~lc~, 
15 t '  

v=2  , %=-~ R, co=--~ R, 

we obtain the following equations 

.J d Z~ (10) 0 0 e~ 

. [ L'o (t~--~l) ~* (v)dv + S  Ln(l~--'QZ*('Odv=--I~~176 2n [J~(~) + J,(~)] U 5 3 / 2 .  
�9 Z ~  4 

0 0 

The sys tem of integral equations (10) can be solved analytically, but we propose  to use here  a numer i -  
cal solution which allows the determination of the tempera ture  jump on a permeable  surface  to be pursued 
by a s impler  method. 

At the point ~ = 0, ~o*, ~ * take on infinite values .  Hence, by analogy with [1], let us select  a small  
posit ive number e for which it can be assumed with sufficient accuracy  that 

g 

0 0 

thereby introducing the new pa ramete r s  
8 

0 0 

They can be expressed  f rom (10) by assuming ~ = 0. For  #~ we find 

i ] g g 

8 8 

Writing ~o* and X* as 
,p,=,~* + A~*, z*=z* + AX* 

and substituting the express ions  for ~ and #~ into (10), we obtain a sys tem of equations to determine A~o~ 
and AXe: 

,3 

A~* (~)/(lO (~) "~- A~,~ (~) 1( n ( ~ ) = f ,  (~) - - j ~  LI~ (~, T) [ q): ('t') - -  1] d z - -  i LI '  (~' T) [ X* (T) - -  1] d~ + P~ (~) - -  

8 8 

U 
i 

Xw 
(12) 

U 

~(zo 

where  

[ 3  1 L , , , (x ) ]__L~I( [ ) [% Lo,~ (x ) 1 

~'.,,, (U = jr L% (~, ~) d~; 

fm (~)= Lm(~) --  Kmo (~) --  K.a (~); 

LI~ (~)] ; 
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r ~ l / 2  

7 1/2 Lo 1 (~); P o ( ~ ) =  2n J2 (~) - -  -~ Loo (~) q-  

~ ! / 2  

7 ~1/~ L10(~)+ Ln(~). 

The sys tem (12) was solved by i terat ion on the Minsk-22 electronic  computer  for  U/Z w = 0; 1. 

The t empera tu re  distr ibution and tempera tu re  jump are  defined as:  

dT 

0 

i dT hT=To--Tw=To--Twq-[%*('c)--l]dx ( ~ - )  w. 

0 

(13) 

The t empera tu re  T o can be represen ted  as 

dT (14) 

Substituting (14) into (13), we obtain 

0 e 

(15) 

Let  us wri te  (11) as 

- -  ~t 2 - - -  
nl/2 U (16) 

F r o m  (15) and (16),we find 

75~ (2__k) l ( d T )  nW2T - 
AT---- ~ dx- ~, 4 U, (17) 

where  k is a coefficient  the value of which is defined by the relat ionship 

k = 2  ~ 8 ~  {[x~* --  e nt- ;[;~* (,r) --1] d~: } . 5 n , / , ,  
e,, 

It should be noted that the express ion  for  the t empera tu re  jump on a permeable  surface  has been 
der ived in a th i r teen-moment  approximation in [2, 3]. It is seen f rom a compar ison  of (17) and the resu l t s  
in these papers  that the f i r s t  member  in (17) differs f rom the analogous t e rm s  in [2, 3] by the p re sence  of 
a fac tor  2 - k  but the members  containing the veloci ty U agree .  

In general  the coefficient k depends on U/~wo However,  computations have shown that this dependence 
is quite weak (for U/~ w = 0 k = 0.826, and for  U/~ w = 1 k = 0.830), and it can be neglected in p rac t i ce .  For  
U = 0, k agrees  well with the resu l t  p resen ted  in [1]. 

The t empera tu re  jump can also be r ep resen ted  as 

AT:: 75___~ (2__keff)l [d._T_TI , 
128 ~dx]  

where  

U 
kef f =k -j- 0.4 - -  . 

Xw 

The dif ference between k and keff cha rac t e r i ze s  the contribution of the t e r m  containing the veloci ty  to 
the magnitude of the t empera tu re  jump. 
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N O T A T I O N  

is the collision frequency; 
is the coordinate along the normal to the wall; 
is the velocity of molecule in a fixed coordinate system; 
is the mass of molecule; 
is the mean free path; 
are the specific heats of the gas at constant pressure  and constant volume, respectively; 
are the gas density and coefficient of heat conduction; 
is the gas constant; 
are the number of molecules per unit volume and gas temperature at the wall, respectively; 
is the number of molecules per unit volume in the s tream of molecules reflected at the wall. 
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