ON THE TEMPERATURE JUMP IN A RAREFEED

gas over a permeable surface

V. G. Leitsina and N. V. Pavlyukevich

An expression is obtained for the temperature jump in a rarefied gas over a permeable surface on the basis of a numerical solution of the model kinetic equation in the Knudsen layer.

It is known that the expression for the temperature jump in a rarefied gas over an impermeable surface, obtained from the solution of the model kinetic equation in the Knudsen layer, differs from the Maxwell expression in the replacement of the factor $(2-\sigma) / \sigma$ by the factor $(2-\mathrm{k} \sigma) / \sigma$, where $\mathrm{k}=0.827$ [1]:

$$
\begin{equation*}
\Delta T=\frac{75 \pi}{128} \frac{2-0,827 \sigma}{\sigma} l\left(\frac{d T}{d x}\right)_{w} \tag{1}
\end{equation*}
$$

In the present work the temperature jump is calculated from the solution of an analogous equation for a rarefied gas over a permeable wall

$$
\begin{equation*}
v_{x} \frac{\partial f}{\partial x}=\theta\left(f_{M}-f\right), \tag{2}
\end{equation*}
$$

where f is the molecular velocity distribution function

$$
\begin{equation*}
f_{M}=\frac{n}{(2 \pi R T)^{3 / 2}} \exp \left\{-\frac{\left(v_{x}-u\right)^{2}+v_{y}^{2}+v_{z}^{2}}{2 R T}\right\} . \tag{3}
\end{equation*}
$$

As in [1], let us assume that the gas density n and temperature T change only slightly in the transition domain so that they can be considered constant (and equal to $\overline{\mathrm{n}}$ and $\overline{\mathrm{T}}$, respectively) in the solution of (2) and only the gradients $\mathrm{d} n / \mathrm{dx}$ and $\mathrm{dT} / \mathrm{dx}$ depend on the coordinate x .

Let us represent the distribution function as follows:

$$
\begin{equation*}
f=f_{0}+f_{1} \tag{4}
\end{equation*}
$$

where f_{0} is some equilibrium distribution function close to f_{M}, and the correction f_{1} is small compared to f_{0}.
Starting from the above-mentioned assumptions, let us write f_{0} as

$$
\begin{equation*}
f_{0}=\frac{\bar{n}}{(2 \pi R \bar{T})^{3 / 2}} \exp \left\{-\frac{v^{2}}{2 R \bar{T}}\right\} . \tag{5}
\end{equation*}
$$

Let us assume that the mass flow rate of the gas u in the x direction is considerably less than the mean velocity of thermal motion \bar{v} and is constant in the Knudsen layer ($u=u_{0}$).

By analogy with [1], substituting (3)-(5) into (2), we reduce the equation to the following:

$$
\begin{equation*}
v_{x} \frac{\partial f_{1}}{\partial x}+\theta f_{1}=-v_{x}-\frac{1}{n} \frac{d n}{d x}(x) f_{0}+v_{x} \frac{1}{\bar{T}}\left(\frac{3}{2}-\frac{v^{2}}{2 R \bar{T}}\right) \frac{d T}{d x}(x) f_{0}+\theta \frac{v_{x} u_{0}}{R \bar{T}} f_{0} . \tag{6}
\end{equation*}
$$

Let us assume that the gas molecules reflected from the wall have a Maxwell distribution corresponding to the wall temperature T_{w}, i.e., the coefficient of accommodation σ equals one.

Taking into account that the ratios $\left(\mathrm{n}_{+}-\mathrm{n}_{0}\right) / \overline{\mathrm{n}}$ and $\left(\mathrm{T}_{\mathrm{w}}-\mathrm{T}_{0}\right) / \overline{\mathrm{T}}$ are small, let us write the boundary condition on the wall thus:

Institute of Mass and Heat Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.19, No.2, pp.259-264, August, 1970. Original article submitted October 23, 1969.

> © 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17 th Street, New York, N.Y. 10011 . All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

$$
\begin{equation*}
f_{1}(0, \mathbf{v})=\frac{n_{+}-n_{0}}{\bar{n}} f_{0}-\frac{T_{w}-T_{0}}{\bar{T}}\left(\frac{3}{2}-\frac{v^{2}}{2 R T}\right) f_{0} \tag{7}
\end{equation*}
$$

On the basis of (6) and (7) we obtain for f_{1}

$$
\begin{gather*}
f_{v_{x}>0}=\left[\frac{n_{+}-n_{0}}{\bar{n}} \exp \left\{-\frac{\theta x}{v_{x}}\right\}-\frac{1}{\bar{n}} \int_{0}^{x} \frac{d n}{d x}(t) \exp \left\{\frac{\theta}{v_{x}}(t-x)\right\} d t\right] f_{0}-\left(\frac{3}{2}-\frac{v^{2}}{2 R \bar{T}}\right) \\
\times\left[\frac{T_{w}-T_{0}}{\bar{T}} \exp \left\{-\frac{\theta x}{v}\right\}-\frac{1}{\bar{T}} \int_{0}^{\infty} \frac{d T}{d x}(t) \exp \left\{\frac{\theta}{v_{x}}(t-x)\right\} d t\right] f_{0}+\frac{u_{0} v_{x}}{R \bar{T}}\left[1-\exp \left\{-\frac{\theta x}{v_{x}}\right\}\right] f_{0}, \tag{8}\\
f_{v_{x}<0}^{f_{1}}=\frac{f_{3}}{\bar{n}} \int_{x}^{\infty} \frac{d n}{d x}(t) \exp \left\{\frac{\theta}{v_{x}}(t-x)\right\} d t-\left(\frac{3}{2}-\frac{v^{2}}{2 R \bar{T}}\right) \frac{f_{0}}{\bar{T}} \int_{x}^{\infty} \frac{d T}{d x}(t) \exp \left\{\frac{\theta}{v_{x}}(t-x)\right\} d t+\frac{u_{0} v_{x}}{R \bar{T}} f_{0} .
\end{gather*}
$$

The temperature jump is defined as the difference between the temperature T_{0}^{\prime} (which is a linear extrapolation to the wall of the temperature curve in the domain bounding the layer near the wall) and the wall temperature T_{w}. Hence, we assume henceforth

$$
\left(\frac{d T}{d x}\right)_{w}=\frac{d T}{d x}(x), \quad x \rightarrow \infty
$$

Using the mass and energy conservation laws, we find the unknown functions (dn/dx)(x) and (dT/dx) (x) from the expressions governing the mass and heat fluxes in a gas over a permeable wall:

$$
\begin{gather*}
\int_{\mathbf{v}} v_{x} f d \mathbf{v}=\int_{\mathbf{v}} v_{x} f_{1} d \mathbf{v}=\bar{n} u_{0}, \tag{9}\\
\int_{\mathbf{v}} \frac{1}{2} m v_{x} v^{2} f d \mathbf{v}=\int_{\mathbf{v}} \frac{1}{2} m v_{x} v^{2} f_{1} d \mathbf{v}=-\lambda\left(\frac{d T}{d x}\right)_{w}+\bar{n} m u_{0} c_{p} \bar{T} .
\end{gather*}
$$

The constants $\left(n_{+}-n_{0}\right) / \bar{n}$ and $\left(T_{w}-T_{0}\right) / \bar{T}$ play the part of proper parameters.
Let us introduce the dimensionless variables

$$
\begin{gathered}
\xi=\frac{16}{15 \pi^{1 / 2}} \frac{x}{l}, \\
\mathbf{V}=\frac{\mathbf{v}}{(2 R \bar{T})^{1 / 2}}, \quad U=\frac{u_{0}}{(2 R \bar{T})^{1 / 2}}, \\
\varphi(\xi)=\frac{1}{\bar{n}} \frac{d n}{d \xi}(\xi), \chi(\xi)=\frac{1}{\bar{T}} \frac{d T}{d \xi}(\xi)
\end{gathered}
$$

and let us define the functions

$$
\begin{gathered}
J_{n}(\xi)=\int_{0}^{\infty} V_{x}^{n} \exp \left\{-\frac{\xi}{V_{x}}-V_{x}^{2}\right\} d V_{x} \\
L_{m n}(\xi)=\int_{V_{x}>0} V_{x} V^{2 m}\left(\frac{3}{2}-V^{2}\right)^{n} \exp \left\{-\frac{\xi}{V_{x}}-V^{2}\right\} d \mathbf{V}
\end{gathered}
$$

Let us use the new variables

$$
\varphi^{*}(\xi)=-\frac{\varphi(\xi)}{\chi_{w}}, \chi^{*}(\xi)=\frac{\chi(\xi)}{\chi_{\omega}}
$$

and the proper parameters

$$
\mu_{0}=\frac{n_{+}-n_{0}}{\bar{n} \chi_{w}}, \mu_{1}=-\frac{T_{w}-T_{0}}{\bar{T} \chi_{w}}
$$

Substituting (8) into (9) and starting from the fact that

$$
\begin{gathered}
\theta=\frac{8}{15} \frac{\bar{v}}{l}, \lambda=\frac{25 \pi}{64} \bar{\rho} \bar{v} c_{D}, \\
\bar{v}=2\left(\frac{2 R \bar{T}}{\pi}\right)^{1 / 2}, c_{p}=\frac{5}{2} R, c_{D}=\frac{3}{2} R,
\end{gathered}
$$

we obtain the following equations

$$
\begin{gather*}
\int_{0}^{\infty} L_{00}(|\xi-\tau|) \varphi^{*}(\tau) d \tau+\int_{0}^{\infty} L_{01}(|\xi-\tau|) \chi^{*}(\tau) d \tau=-\mu_{0} L_{00}(\xi)-\mu_{1} L_{01}(\xi)+2 \pi J_{2}(\xi) \frac{U}{\chi_{w}} \tag{10}\\
\int_{0}^{\infty} L_{10}(\xi-\tau \mid) \varphi^{*}(\tau) d \tau+\int_{0}^{\infty} L_{11}(\mid \xi-\tau) \chi^{*}(\tau) d \tau=-\mu_{0} L_{10}(\xi)-\mu_{1} L_{11}(\xi)+2 \pi\left[J_{2}(\xi)+J_{4}(\xi)\right] \frac{U}{\chi_{w}}-\frac{5}{4} \pi^{3 / 2} .
\end{gather*}
$$

The system of integral equations (10) can be solved analytically, but we propose to use here a numerical solution which allows the determination of the temperature jump on a permeable surface to be pursued by a simpler method.

At the point $\xi=0, \varphi^{*}, \chi^{*}$ take on infinite values. Hence, by analogy with [1], let us select a small positive number ε for which it can be assumed with sufficient accuracy that

$$
\int_{0}^{\mathrm{s}} L_{m n}(|\xi-\tau|) \varphi^{*}(\tau) d \tau=L_{m n}(\xi) \int_{0}^{\varepsilon} \varphi^{*}(\tau) d \tau
$$

thereby introducing the new parameters

$$
\mu_{0}^{*}=\mu_{0}+\int_{0}^{\mathrm{E}} \varphi^{*}(\tau) d \tau, \mu_{1}^{*}=\mu_{1}+\int_{0}^{\mathrm{E}} \chi^{*}(\tau) d \tau
$$

They can be expressed from (10) by assuming $\xi=0$. For μ_{1}^{*} we find

$$
\begin{align*}
\mu_{1}^{*}= & -\frac{2}{\pi^{2}}\left\{\frac{\pi}{2}\left[-\int_{\varepsilon}^{\infty} L_{10}(\tau) \varphi^{*}(\tau) d \tau-\int_{\varepsilon}^{\infty} L_{11}(\tau) \chi^{*}(\tau) d \tau-\frac{5}{4} \pi^{3 / 2}\right]\right. \\
& \left.-\pi\left[-\int_{\varepsilon}^{\infty} L_{00}(\tau) \varphi^{*}(\tau) d \tau-\int_{\varepsilon}^{\infty} L_{01}(\tau) \chi^{*}(\tau) d \tau\right]\right\}-\frac{\pi^{1 / 2}}{4} \frac{U}{\chi_{w}} \tag{11}
\end{align*}
$$

Writing φ^{*} and χ^{*} as

$$
\varphi^{*}=\varphi_{n}^{*}+\Delta \varphi_{n}^{*}, \chi^{*}=\chi_{n}^{*}+\Delta \chi_{n}^{*}
$$

and substituting the expressions for μ_{0}^{*} and μ_{1}^{*} into (10), we obtain a system of equations to determine $\Delta \varphi_{\mathrm{n}}^{*}$ and $\Delta \chi_{n}^{*}$:

$$
\begin{align*}
& \Delta \varphi_{n}^{*}(\xi) K_{00}(\xi)+\Delta \chi_{n}^{*}(\xi) K_{01}(\xi)=f_{0}(\xi)-\int_{\varepsilon}^{\infty} L_{00}^{*}(\xi, \tau)\left[\varphi_{n}^{*}(\tau)-1\right] d \tau-\int_{\varepsilon}^{\infty} L_{01}^{*}(\xi, \tau)\left[\chi_{n}^{*}(\tau)-1\right] d \tau+P_{0}(\xi) \frac{U}{\chi_{w}}, \tag{12}\\
& \Delta \varphi_{n}^{*}(\xi) K_{10}(\xi)+\Delta \chi_{n}^{*}(\xi) K_{11}(\xi)=f_{1}(\xi)-\int_{\varepsilon}^{\infty} L_{10}^{*}(\xi, \tau)\left[\varphi_{n}^{*}(\tau)-1\right] d \tau-\int_{\varepsilon}^{\infty} L_{11}(\xi, \tau)\left[\chi_{n}^{*}(\tau)-1\right] d \tau+P_{1}(\xi) \frac{U}{\chi_{v v}},
\end{align*}
$$

where

$$
\begin{gathered}
L_{m n}^{*}(\xi, \tau)=L_{m n}(|\xi-\tau|)-L_{m 0}(\xi)\left[\frac{3}{\pi} L_{0 n}(\tau)-\frac{1}{2 \pi} L_{1 n}(\tau)\right]-L_{m 1}(\xi)\left[\frac{2}{\pi} L_{0 n}(\tau)-\frac{1}{\pi} L_{1 n}(\tau)\right] ; \\
K_{m n}(\xi)=\int_{\varepsilon}^{\infty} L_{m n}^{*}(\xi, \tau) d \tau \\
f_{m}(\xi)=L_{m}(\xi)-K_{m 0}(\xi)-K_{m 1}(\xi) ;
\end{gathered}
$$

$$
\begin{gathered}
P_{0}(\xi)=2 \pi J_{2}(\xi)-\frac{7}{8} \pi^{1 / 2} L_{00}(\xi)+\frac{\pi^{1 / 2}}{4} L_{01}(\xi) ; \\
P_{1}(\xi)=2 \pi\left[J_{2}(\xi)+J_{4}(\xi)\right]-\frac{7}{8} \pi^{1 / 2} L_{10}(\xi)+\frac{\pi^{1 / 2}}{4} L_{11}(\xi) .
\end{gathered}
$$

The system (12) was solved by iteration on the Minsk-22 electronic computer for $\mathrm{U} / \chi_{\mathrm{w}}=0 ; 1$. The temperature distribution and temperature jump are defined as:

$$
\begin{gather*}
T(\xi)=T_{0}+\int_{0}^{\xi} \chi^{*}(\tau) d \tau\left(\frac{d T}{d \xi}\right)_{w} \tag{13}\\
\Delta T=T_{0}^{\prime}-T_{w}=T_{0}-T_{w}+\int_{0}^{\infty}\left[\chi^{*}(\tau)-1\right] d \tau\left(\frac{d T}{d_{亏}}\right)_{w} .
\end{gather*}
$$

The temperature T_{0} can be represented as

$$
\begin{equation*}
T_{0}=T_{w}+\mu_{1}\left(\frac{d T}{d \xi}\right)_{w} \tag{14}
\end{equation*}
$$

Substituting (14) into (13), we obtain

$$
\begin{equation*}
\Delta T=\left\{\mu_{1}+\int_{0}^{\infty}\left[\chi^{*}(\tau)-1\right] d \tau\right\}\left(\frac{d T}{d \xi}\right)_{w}=\left\{\mu_{1}^{*}-\varepsilon+\int_{\varepsilon}^{\infty}\left[\chi^{*}(\tau)-1\right] d \tau\right\}\left(\frac{d T}{d \xi}\right)_{w} . \tag{15}
\end{equation*}
$$

Let us write (11) as

$$
\begin{equation*}
\mu_{t}^{*}=\mu_{2}^{*}-\frac{\pi^{1 / 2}}{4} \frac{U}{\chi_{w}} . \tag{16}
\end{equation*}
$$

From (15) and (16), we find

$$
\begin{equation*}
\Delta T=\frac{75 \pi}{128}(2-k) l\left(\frac{d T}{d x}\right)_{\omega}-\frac{\pi^{1 / 2} \bar{T}}{4} U \tag{17}
\end{equation*}
$$

where k is a coefficient the value of which is defined by the relationship

$$
k=2-\frac{8}{5 \pi^{1 / 2}}\left\{\mu_{2}^{*}-\varepsilon+\int_{\varepsilon}^{\infty}\left[\chi^{*}(\tau)-1\right] d \tau\right\} .
$$

It should be noted that the expression for the temperature jump on a permeable surface has been derived in a thirteen-moment approximation in [2,3]. It is seen from a comparison of (17) and the results in these papers that the first member in (17) differs from the analogous terms in [2, 3] by the presence of a factor $2-k$ but the members containing the velocity U agree.

In general the coefficient k depends on $\mathrm{U} / \chi_{\mathrm{W}}$. However, computations have shown that this dependence is quite weak (for $\mathrm{U} / \chi_{\mathrm{W}}=0 \mathrm{k}=0.826$, and for $\mathrm{U} / \chi_{\mathrm{W}}=1 \mathrm{k}=0.830$), and it can be neglected in practice. For $\mathrm{U}=0, \mathrm{k}$ agrees well with the result presented in [1].

The temperature jump can also be represented as

$$
\Delta T=\frac{75 \pi}{128}\left(2-k_{\mathrm{eff}}\right) /\left(\frac{d T}{d x}\right)_{w}
$$

where

$$
k_{\mathrm{eff}}=k+0.4 \frac{U}{\chi_{w}}
$$

The difference between k and $\mathrm{k}_{\text {eff }}$ characterizes the contribution of the term containing the velocity to the magnitude of the temperature jump.
$\theta \quad$ is the collision frequency;
x is the coordinate along the normal to the wall;
v is the velocity of molecule in a fixed coordinate system;
$\mathrm{m} \quad$ is the mass of molecule;
$l \quad$ is the mean free path;
c_{p}, c_{V} are the specific heats of the gas at constant pressure and constant volume, respectively;
ρ, λ are the gas density and coefficient of heat conduction;
$\mathrm{R} \quad$ is the gas constant;
$\mathrm{n}_{0}, \mathrm{~T}_{0}$ are the number of molecules per unit volume and gas temperature at the wall, respectively;
n_{+} is the number of molecules per unit volume in the stream of molecules reflected at the wall.

LITERATURE CITED

1. P. Welander, Arkiv for Fysik, 7, 6 (1954).
2. V. G. Leitsina and N. V. Pavlyukevich, Inzh.-Fiz. Zh., 12, No. 3 (1967).
3. P. Ya. Kucherov and L.É. Rikenglaz, Zh. Éksperim. Teor. Fiz., 37, No. 1 (7) (1959).
